Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phys Imaging Radiat Oncol ; 29: 100548, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38380153

RESUMO

Background and purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) describes tissue microvasculature and has prognostic and predictive potential in radiotherapy for head and neck cancer (HNC). However, lack in standardization of DCE-MRI hinders comparison of studies and clinical implementation. This study investigated the accuracy and robustness of the population arterial input function (AIF), correlations between pharmacokinetic parameters and their association to T stage and human papillomavirus (HPV) status for HNC. Materials and methods: DCE-MRI was acquired for 44 HNC patients. Population AIFs were calculated with six different approaches. DCE-MRI was analysed in primary and lymph node tumours using Tofts model (TM) with population AIFs and individual AIFs, extended TM (ETM) with individual AIFs, Brix model (BM), and areas under the curve (AUCs). Intraclass correlation, concordance correlation, Pearson correlation and Whitney Mann U test helped examining the robustness and accuracy of population AIF, correlations between DCE-MRI parameters and their association to T stage and HPV status, respectively. Results: The population AIF was robust but differed from individual AIFs. There was significant correlation between KtransTM/ETM and ve, TM/ETM, and KtransTM/ETM and Kep, TM/ETM. ABrix and AUCs correlated for lymph nodes. Kep, Brix correlated with ABrix, KtransTM/ETM and Kep, TM/ETM for primary tumours. Kep, TM significantly decreased with increasing T stage. Both the correlations and the parameters' association to T stage were stronger for HPV negative lesions. Conclusions: Individual AIF was preferred for accurate pharmacokinetic modelling of DCE-MRI. DCE-MRI parameters and their correlations were affected by the lesion type, HPV status and T staging.

2.
Sci Rep ; 14(1): 258, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167665

RESUMO

Radiomics objectively quantifies image information through numerical metrics known as features. In this study, we investigated the stability of magnetic resonance imaging (MRI)-based radiomics features in rectal cancer using both anatomical MRI and quantitative MRI (qMRI), when different methods to define the tumor volume were used. Second, we evaluated the prognostic value of stable features associated to 5-year progression-free survival (PFS) and overall survival (OS). On a 1.5 T MRI scanner, 81 patients underwent diagnostic MRI, an extended diffusion-weighted sequence with calculation of the apparent diffusion coefficient (ADC) and a multiecho dynamic contrast sequence generating both dynamic contrast-enhanced and dynamic susceptibility contrast (DSC) MR, allowing quantification of Ktrans, blood flow (BF) and area under the DSC curve (AUC). Radiomic features were extracted from T2w images and from ADC, Ktrans, BF and AUC maps. Tumor volumes were defined with three methods; machine learning, deep learning and manual delineations. The interclass correlation coefficient (ICC) assessed the stability of features. Internal validation was performed on 1000 bootstrap resamples in terms of discrimination, calibration and decisional benefit. For each combination of image and volume definition, 94 features were extracted. Features from qMRI contained higher prognostic potential than features from anatomical MRI. When stable features (> 90% ICC) were compared with clinical parameters, qMRI features demonstrated the best prognostic potential. A feature extracted from the DSC MRI parameter BF was associated with both PFS (p = 0.004) and OS (p = 0.004). In summary, stable qMRI-based radiomics features was identified, in particular, a feature based on BF from DSC MRI was associated with both PFS and OS.


Assuntos
Radiômica , Neoplasias Retais , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Prognóstico , Neoplasias Retais/diagnóstico por imagem , Estudos Retrospectivos
3.
Eur J Nucl Med Mol Imaging ; 50(10): 3084-3096, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37148296

RESUMO

PURPOSE: Tumor hypoxia and other microenvironmental factors are key determinants of treatment resistance. Hypoxia positron emission tomography (PET) and functional magnetic resonance imaging (MRI) are established prognostic imaging modalities to identify radiation resistance in head-and-neck cancer (HNC). The aim of this preclinical study was to develop a multi-parametric imaging parameter specifically for focal radiotherapy (RT) dose escalation using HNC xenografts of different radiation sensitivities. METHODS: A total of eight human HNC xenograft models were implanted into 68 immunodeficient mice. Combined PET/MRI using dynamic [18F]-fluoromisonidazole (FMISO) hypoxia PET, diffusion-weighted (DW), and dynamic contrast-enhanced MRI was carried out before and after fractionated RT (10 × 2 Gy). Imaging data were analyzed on voxel-basis using principal component (PC) analysis for dynamic data and apparent diffusion coefficients (ADCs) for DW-MRI. A data- and hypothesis-driven machine learning model was trained to identify clusters of high-risk subvolumes (HRSs) from multi-dimensional (1-5D) pre-clinical imaging data before and after RT. The stratification potential of each 1D to 5D model with respect to radiation sensitivity was evaluated using Cohen's d-score and compared to classical features such as mean/peak/maximum standardized uptake values (SUVmean/peak/max) and tumor-to-muscle-ratios (TMRpeak/max) as well as minimum/valley/maximum/mean ADC. RESULTS: Complete 5D imaging data were available for 42 animals. The final preclinical model for HRS identification at baseline yielding the highest stratification potential was defined in 3D imaging space based on ADC and two FMISO PCs ([Formula: see text]). In 1D imaging space, only clusters of ADC revealed significant stratification potential ([Formula: see text]). Among all classical features, only ADCvalley showed significant correlation to radiation resistance ([Formula: see text]). After 2 weeks of RT, FMISO_c1 showed significant correlation to radiation resistance ([Formula: see text]). CONCLUSION: A quantitative imaging metric was described in a preclinical study indicating that radiation-resistant subvolumes in HNC may be detected by clusters of ADC and FMISO using combined PET/MRI which are potential targets for future functional image-guided RT dose-painting approaches and require clinical validation.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias de Cabeça e Pescoço , Humanos , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Misonidazol , Imageamento por Ressonância Magnética , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Hipóxia , Compostos Radiofarmacêuticos
4.
Phys Imaging Radiat Oncol ; 22: 77-84, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35602548

RESUMO

Background and purpose: Tumor delineation is required both for radiotherapy planning and quantitative imaging biomarker purposes. It is a manual, time- and labor-intensive process prone to inter- and intraobserver variations. Semi or fully automatic segmentation could provide better efficiency and consistency. This study aimed to investigate the influence of including and combining functional with anatomical magnetic resonance imaging (MRI) sequences on the quality of automatic segmentations. Materials and methods: T2-weighted (T2w), diffusion weighted, multi-echo T2*-weighted, and contrast enhanced dynamic multi-echo (DME) MR images of eighty-one patients with rectal cancer were used in the analysis. Four classical machine learning algorithms; adaptive boosting (ADA), linear and quadratic discriminant analysis and support vector machines, were trained for automatic segmentation of tumor and normal tissue using different combinations of the MR images as input, followed by semi-automatic morphological post-processing. Manual delineations from two experts served as ground truth. The Sørensen-Dice similarity coefficient (DICE) and mean symmetric surface distance (MSD) were used as performance metric in leave-one-out cross validation. Results: Using T2w images alone, ADA outperformed the other algorithms, yielding a median per patient DICE of 0.67 and MSD of 3.6 mm. The performance improved when functional images were added and was highest for models based on either T2w and DME images (DICE: 0.72, MSD: 2.7 mm) or all four MRI sequences (DICE: 0.72, MSD: 2.5 mm). Conclusion: Machine learning models using functional MRI, in particular DME, have the potential to improve automatic segmentation of rectal cancer relative to models using T2w MRI alone.

5.
Strahlenther Onkol ; 196(6): 542-551, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32211941

RESUMO

PURPOSE: The relation between functional imaging and intrapatient genetic heterogeneity remains poorly understood. The aim of our study was to investigate spatial sampling and functional imaging by FDG-PET/MRI to describe intrapatient tumour heterogeneity. METHODS: Six patients with oropharyngeal cancer were included in this pilot study. Two tumour samples per patient were taken and sequenced by next-generation sequencing covering 327 genes relevant in head and neck cancer. Corresponding regions were delineated on pretherapeutic FDG-PET/MRI images to extract apparent diffusion coefficients and standardized uptake values. RESULTS: Samples were collected within the primary tumour (n = 3), within the primary tumour and the involved lymph node (n = 2) as well as within two independent primary tumours (n = 1). Genetic heterogeneity of the primary tumours was limited and most driver gene mutations were found ubiquitously. Slightly increasing heterogeneity was found between primary tumours and lymph node metastases. One private predicted driver mutation within a primary tumour and one in a lymph node were found. However, the two independent primary tumours did not show any shared mutations in spite of a clinically suspected field cancerosis. No conclusive correlation between genetic heterogeneity and heterogeneity of PET/MRI-derived parameters was observed. CONCLUSION: Our limited data suggest that single sampling might be sufficient in some patients with oropharyngeal cancer. However, few driver mutations might be missed and, if feasible, spatial sampling should be considered. In two independent primary tumours, both lesions should be sequenced. Our data with a limited number of patients do not support the concept that multiparametric PET/MRI features are useful to guide biopsies for genetic tumour characterization.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Genes Neoplásicos , Genes p53 , Imageamento por Ressonância Magnética , Imagem Multimodal , Neoplasias Orofaríngeas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Idoso , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundário , Carcinoma de Células Escamosas/ultraestrutura , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Primárias Múltiplas/diagnóstico por imagem , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/ultraestrutura , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/ultraestrutura , Projetos Piloto , Estudos Prospectivos , Compostos Radiofarmacêuticos , Receptor Notch1/genética
6.
Clin Transl Radiat Oncol ; 13: 29-37, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30294681

RESUMO

PURPOSE: To review the potential and challenges of integrating diffusion weighted magnetic resonance imaging (DWI) into radiotherapy (RT). CONTENT: Details related to image acquisition of DWI for RT purposes are discussed, along with the challenges with respect to geometric accuracy and the robustness of quantitative parameter extraction. An overview of diffusion- and perfusion-related parameters derived from mono- and bi-exponential models is provided, and their role as potential RT biomarkers is discussed. Recent studies demonstrating potential of DWI in different tumor sites such as the head and neck, rectum, cervix, prostate, and brain, are reviewed in detail. CONCLUSION: DWI has shown promise for RT outcome prediction, response assessment, as well as for tumor delineation and characterization in several cancer types. Geometric and quantification robustness is challenging and has to be addressed adequately. Evaluation in larger clinical trials with well designed imaging protocol and advanced analysis models is needed to develop the optimal strategy for integrating DWI in RT.

7.
Radiother Oncol ; 128(3): 485-491, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747873

RESUMO

BACKGROUND AND PURPOSE: Functional PET/MRI has great potential to improve radiotherapy planning (RTP). However, data integration requires imaging with radiotherapy-specific patient positioning. Here, we investigated the feasibility and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer (HNC) patients using a dedicated hardware setup. MATERIAL AND METHODS: Ten HNC patients were examined with simultaneous PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respectively. We tested feasibility of radiotherapy-specific patient positioning and compared the image quality between both setups by pairwise image analysis of 18F-FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assessment, similarity measures including average symmetric surface distance (ASSD) of PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean apparent diffusion coefficient (ADC) value were used. RESULTS: PET/MRI in radiotherapy position was feasible - all patients were successfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4-1.2) and 0.9 (0.5-1.3) mm, respectively. For T2-weighted MRI, a reduced SNR of -26.2% (-39.0--11.7) was observed with radiotherapy setup. No significant difference in mean ADC was found. CONCLUSIONS: Simultaneous PET/MRI in HNC patients using radiotherapy positioning aids is clinically feasible. Though SNR was reduced, the image quality obtained with a radiotherapy setup meets RTP requirements and the data can thus be used for personalized RTP.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Posicionamento do Paciente , Estudos Prospectivos
8.
Strahlenther Onkol ; 194(8): 719-726, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29564483

RESUMO

PURPOSE: The purpose of this study was to demonstrate the feasibility of voxel-wise multiparametric characterization of head and neck squamous cell carcinomas (HNSCC) using hybrid multiparametric magnetic resonance imaging and positron emission tomography with [18F]-fluorodesoxyglucose (FDG-PET/MRI) in a radiation treatment planning setup. METHODS: Ten patients with locally advanced HNSCC were examined with a combined FDG-PET/MRI in an irradiation planning setup. The multiparametric imaging protocol consisted of FDG-PET, T2-weighted transverse short tau inversion recovery sequence (STIR) and diffusion-weighted MRI (DWI). Primary tumours were manually segmented and quantitative imaging parameters were extracted. PET standardized uptake values (SUV) and DWI apparent diffusion coefficients (ADC) were correlated on a voxel-wise level. RESULTS: Images acquired in this specialised radiotherapy planning setup achieved good diagnostic quality. Median tumour volume was 4.9 [1.1-42.1] ml. Mean PET SUV and ADC of the primary tumours were 5 ± 2.5 and 1.2 ± 0.3 10-3 mm2/s, respectively. In voxel-wise correlation between ADC values and corresponding FDG SUV of the tumours, a significant negative correlation was observed (r = -0.31 ± 0.27, p < 0.05). CONCLUSION: Multiparametric voxel-wise characterization of HNSCC is feasible using combined PET/MRI in a radiation planning setup. This technique may provide novel insights into tumour biology with regard to radiation therapy in the future.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/radioterapia , Imagem de Difusão por Ressonância Magnética , Neoplasias Otorrinolaringológicas/diagnóstico por imagem , Neoplasias Otorrinolaringológicas/radioterapia , Tomografia por Emissão de Pósitrons , Planejamento da Radioterapia Assistida por Computador , Idoso , Carcinoma de Células Escamosas/patologia , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/instrumentação , Desenho de Equipamento , Estudos de Viabilidade , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Otorrinolaringológicas/patologia , Projetos Piloto , Tomografia por Emissão de Pósitrons/instrumentação , Estudos Prospectivos , Radioterapia Adjuvante , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...